Reading: Sec 2.8, or some related Wikipedia pages if needed.

- 1. (Entropy)
 - (a) Given $\mathbf{x} \in \mathbb{R}^p$, with density or point mass function $p(\mathbf{x})$, write down the general definition of *entropy*.
 - (b) Write down explicit formula for discrete case and continuous case. [Hint: What is the expression for expectation under these two cases?]
 - (c) Give interpretation to entropy. (What does it measure/represent?)
 - (d) Try to compute the entropy for \mathbf{x} following these distributions:
 - Uniform on a set of size m
 - Bernoulli
 - Geometric
 - univariate normal $N(\mu, \sigma^2)$
 - multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- 2. (KL divergence)
 - (a) What is a convex function? What is the Jensen's inequality?
 - (b) Let P and Q be two distributions defined on the same sample space S, with corresponding density functions or point mass functions being $p(\mathbf{x})$ and $q(\mathbf{x})$ respectively. Write down the definition of *KL-Divergence* between the two distribution.
 - (c) Write down explicit formula for discrete case and continuous case. [Hint: What is the expression for expectation under these two cases?]
 - (d) Give interpretation to KL divergence. (What does it measure/represent?)
 - (e) Show the following properties using the definition:
 - If P = Q, then $D_{kl}(P||Q) = 0$
 - If $P \neq Q$, then $D_{kl}(P||Q) \ge 0$ [Hint: Use Jensen's inequality]
 - (f) Use KL divergence to show the following statements:
 - The uniform distribution has the highest entropy over all distributions on the set S.
 - The Gaussian random variables have the largest entropy.
- 3. (Maximum Likelihood Estimation)
 - (a) What is a likelihood function?
 - (b) What does MLE do? What's the idea? Describe the estimation procedure using MLE.
 - (c) Review some examples on Wikipedia https://en.wikipedia.org/wiki/Maximum_likelihood_ estimation#Examples if needed.
 - (d) Suppose that $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is from distribution P with density $p(\mathbf{x})$. Show that if we adopt the distribution family Q_{θ} with density function $q_{\theta}(\mathbf{x})$ to calculate the MLE, then the MLE tries to find the distribution Q_{θ} that is closest to the true distribution P in the sense of KL divergence.