Reading: Sec 11.1 - 11.4

- 1. Mixture Normal
 - (a) Write down the density function of mixture normal
 - (b) What are the constraints of the parameters?
- 2. EM algorithm
 - (a) Why do we need EM algorithm? What is it designed for?
 - (b) Consider the EM Algorithm with Single Observation. Let X be the observed variable, with density function $p_{\theta}(X)$ (here θ is a parameter). Let Z be the latent variable, and assigned an ARTIFICIAL distribution Q(Z) to it (with density q(Z))
 - i. Let $p_{\theta}(X, Z)$ be the true joint density function of (X, Z) and $p_{\theta}(Z \mid X)$ be the true conditional density function of Z given X. Write $p_{\theta}(X)$ and $p_{\theta}(Z \mid X)$ in terms of $p_{\theta}(X, Z)$.
 - ii. For continuous Z, show that the log likelihood function is

$$\log p_{\theta}(X) = \int q(Z) \log \frac{p_{\theta}(X, Z)}{q(Z)} dZ + D_{\mathrm{kl}} \left(Q(Z) \| P_{\theta}(Z \mid X) \right)$$

iii. So, with the identity above, we actually have

$$\max_{\theta} \log p_{\theta}(X) = \max_{\theta} \left\{ \int q(Z) \log \frac{p_{\theta}(X, Z)}{q(Z)} dZ + D_{\mathrm{kl}}\left(Q(Z) \| P_{\theta}(Z \mid X)\right) \right\}$$
(1)

- iv. Since q(Z) can be ARTIFICIALLY selected, what will happen if we let $q(Z) = p_{\theta}(Z \mid X)$?
- v. This means that we can just focus on the first term. Now the E-step is

$$q_{\text{new}}\left(Z\right) = p_{\theta_{\text{old}}}\left(Z \mid X\right)$$

Can you write down the M-step based on our observation above?

- (c) Now we consider i.i.d. observations $(X_1, Z_1), \ldots, (X_n, Z_n)$.
 - i. Write down the target in the form of equation (1)
 - ii. Write down the expression for E step and M step.
- 3. EM for Mixture Normal
 - (a) This is the general setting: Let Z be the latent variable which is responsible for generating X. For mixture normal, Z follows the multinomial distribution, $P_{\theta}(Z = \ell) = \pi_{\ell}$, where $\ell = 1, \ldots, K$. Given $Z = \ell, X$ is generated from the ℓ th normal distribution $N(\mu_{\ell}, \Sigma_{\ell})$, which means that $P_{\theta}(X \mid Z = \ell) = f_{(\mu_{\ell}, \Sigma_{\ell})}(X)$.

But do notice that this is how we "deliberately" generate X. What if we just observed (X_1, \dots, X_n) ? (Consider Figure 11.11 on page 353 WITHOUT colors, how will you separate different color groups? That's one of the things what we need to do.)

- (b) E-Step for Mixture Normal
 - i. Write down the joint density function $p_{\theta}(X, Z = \ell)$ and $p_{\theta}(X, Z)$
 - ii. Write down the density function of X
 - iii. Find $p_{\theta}(Z \mid X)$ and $p_{\theta}(Z_i = j \mid X_i)$
 - iv. Recall the E-Step of EM as

$$q_{\text{new}} (Z_i = j) = p_{\theta_{\text{old}}} (Z_i = j \mid X_i), \quad j = 1, \dots, K$$

Let $q_{ij} = p_{\theta} (Z_i = j \mid X_i)$, and $\theta^{(t)} = \left\{ \left(\pi_{\ell}^{(t)}, \mu_{\ell}^{(t)}, \Sigma_{\ell}^{(t)} \right), \ell = 1, \dots, K \right\}$ as the solution of t-th iteration step. Write down how we should update q_{ij} (denoted as $q_{ij}^{(t)}$).

- (c) M-Step for Mixture Normal. Now $q_{ij}^{(t)}$ is treated as a constant. The M-Step needs to update (π_j, μ_j, Σ_j) for $j = 1, \ldots, K$
 - i. Show that

$$\max_{\theta} \sum_{i=1}^{n} \sum_{j=1}^{K} \left\{ q_{ij}^{(t)} \log \frac{\pi_j f_{(\mu_j, \Sigma_j)} \left(X_i \right)}{q_{ij}^{(t)}} \right\} = \max_{\mu_j, \Sigma_j} \sum_{i=1}^{n} \sum_{j=1}^{K} \left\{ q_{ij}^{(t)} \log f_{(\mu_j, \Sigma_j)} \left(X_i \right) \right\} + \max_{\pi_j} \sum_{i=1}^{n} \sum_{j=1}^{K} q_{ij}^{(t)} \log \pi_j$$

ii. Based on the above observations, we have

$$\max_{\mu_{j}, \Sigma_{j}} \sum_{i=1}^{n} \sum_{j=1}^{K} \left\{ q_{ij}^{(t)} \log f_{(\mu_{j}, \Sigma_{j})} \left(X_{i} \right) \right\} = \max_{\mu_{1}, \Sigma_{1}} \sum_{i=1}^{n} q_{i1}^{(t)} \log f_{(\mu_{1}, \Sigma_{1})} \left(X_{i} \right) + \ldots + \max_{\mu_{K}, \Sigma_{K}} \sum_{i=1}^{n} q_{iK}^{(t)} \log f_{(\mu_{K}, \Sigma_{K})} \left(X_{i} \right)$$

So, for the update of (μ_j, Σ_j) , we only need to consider

$$\max_{\mu_j, \Sigma_j} \sum_{i=1}^n q_{ij}^{(t)} \log f_{(\mu_j, \Sigma_j)} \left(X_i \right)$$

iii. If $q_{ij}^{(t)} = 1$ for $i = 1, \ldots, n$, compute

$$\mu_j^{(t+1)}, \quad \Sigma_j^{(t+1)}$$

Hint: using MLE.

- iv. For $0 \le q_{ij}^{(t)} \le 1$, Write down the log-likelihood equations and Find the solution to your log-likelihood equations.
- v. For the update of π_j , use the Lagrange multiplier method to find the solution. Hint: consider

$$\max_{\pi_j} \left\{ \sum_{i=1}^n \sum_{j=1}^K q_{ij}^{(t)} \log \pi_j + \lambda \left(\sum_{j=1}^K \pi_j - 1 \right) \right\}$$

— FOR INTERNAL USE ONLY —