
Graph Neural Network

Zijian Chen

zijianc@bu.edu

4/10/2025 EC523, Spring 2025, Lecture 21 1

Contents

• Part I: Introduction
graphs; publication trend; why and how do we study graphs

• Part II: Basic Principles
difference between graphs and images; message passing formulation;
pitfalls and work-arounds

• Part III: Architectures and Training
design of frameworks and training schemes for different tasks

• Part IV: Non-message-passing GNNs
spectral GNNs; graph transformers

4/10/2025 EC523, Spring 2025, Lecture 21 2

Graph Neural Network

Part I: Introduction

4/10/2025 EC523, Spring 2025, Lecture 21 3

What is a Graph

4/10/2025 EC523, Spring 2025, Lecture 21 4

Rigorously, a graph is an ordered pair

edge
node

We use adjacency matrix and the Laplacian to algebraically represent the structure.

1 2

3 4

1 2

3 4

1 2 3 4

1

2

3

4

Data as Graphs

4/10/2025 EC523, Spring 2025, Lecture 21 5

what I am doing

ICLR Publication Trend

4/10/2025 EC523, Spring 2025, Lecture 21 6

…

2024

Different Types of Tasks

4/10/2025 EC523, Spring 2025, Lecture 21 7

graph-level regression/
classification

graph generation

node-level tasks
(mostly classification)

structure identification
subgraph property prediction

link prediction/
edge feature engineering

protein folding (predicting
node 3D coordinates)

recommender systems
drug interaction

Google Map ETADrug Discovery

Patient status

Graph Neural Network

Part II: Basic Principles

4/10/2025 EC523, Spring 2025, Lecture 21 8

How are graphs different 1/2

4/10/2025 EC523, Spring 2025, Lecture 21 9

Observation 1: graphs do not have a fixed notion of locality or sliding window.

How are graphs different 2/2

4/10/2025 EC523, Spring 2025, Lecture 21 10

Observation 2: graphs do not have a canonical node ordering.

A

B

C

D

C

D

B

A

A B C D
A

B

C

D

A

B

C

D

A B C D

How do we want the output to be?

Invariance and Equivariance

4/10/2025 EC523, Spring 2025, Lecture 21 11

Observation 2: graphs do not have a canonical node ordering.

Invariance: permuting the input, the output stays the same.

or,

Equivariance: permuting the input, the output also gets permuted accordingly.

or,

Traditional NN architectures, e.g., MLPs, fail for graphs, as switching the order of input will
lead to different outputs.

Invariance/Equivariance can be achieved by passing and aggregating information from
neighbors. This is the core of GNN.

Constructing a GNN

4/10/2025 EC523, Spring 2025, Lecture 21 12

In each layer, a GNN aggregates neighboring node features.

Message Passing

4/10/2025 EC523, Spring 2025, Lecture 21 13

Mathematically, we can write the message passing rule as

Key ingredients:
• Message: each node computes a message.
• Aggregation: aggregate message from neighbors.
• Update: determine how to apply the aggregated message to target node.

Which part do you think is the hardest to implement?

Message Passing

4/10/2025 EC523, Spring 2025, Lecture 21 14

Let's see a concrete example: (one of your homework questions!)

• Message:

• Aggregation:

• Update:

Is this formulation invariant or equivariant?

More Examples…

4/10/2025 EC523, Spring 2025, Lecture 21 15

Almost all current cutting-edge GNN designs are MPNNs:
• vanilla GCN (2017)
• GAT
• GraphSAGE
• GIN
• PNA
• EGNN
• …

We will discuss non-message-passing designs later.

Implementation

4/10/2025 EC523, Spring 2025, Lecture 21 16

You will need to implement a light-weight
version of this class in HW5

(official class: ~1000 lines of code)

CNN as a special case of GNN

4/10/2025 EC523, Spring 2025, Lecture 21 17

Consider a CNN with 3x3 filter:

You don't necessarily need weight sharing
& You can pick any neighbor you want

A Closer Look: Deep layers

4/10/2025 EC523, Spring 2025, Lecture 21 18

Observation: Layer-k update gets info from nodes up to k-hops away.

Consider a simplified version of the general formulation:

Then we will have

As , This is called over-smoothing.

Are there specific choices that can avoid over-smoothing?

A Closer Look: Expressivity

4/10/2025 EC523, Spring 2025, Lecture 21 19

A classical expressivity test is Graph Isomorphism.

A simpler problem: given a pair of nodes with different neighborhood structure, is there a
GNN that can always tell them apart?

Consider the extreme case where all nodes have the same feature. Computational graph
for Node 1 and Node 2:

A Closer Look: Expressivity

4/10/2025 EC523, Spring 2025, Lecture 21 20

But GNN only see the node features but not IDs

So, the updated features of node 1 and node 2 are still identical.

A Closer Look: Expressivity

4/10/2025 EC523, Spring 2025, Lecture 21 21

Computational graphs for all nodes:

should produce
identical features

should produce
different features

A Closer Look: Expressivity

4/10/2025 EC523, Spring 2025, Lecture 21 22

Conclusion: The expressive power of GNNs depend on the expressive power of the
aggregation function. Injective function leads to the most expressive GNN.

More in-depth Conclusion:
• MP-GNNs are at most as powerful as the WL test in distinguishing graph structures.
• One such GNN ("Graph Isomorphism Network", ICLR 2019):

• Examples that WL test (or equivalently, GIN) fails:
• Certain special structures
• Counting cycles in the graph

A Closer Look: Expressivity

4/10/2025 EC523, Spring 2025, Lecture 21 23

Workarounds:

• Higher-order WL tests: e.g.,
• 2-WL considers pairs of nodes – "hypergraphs"

• Positional/structural encodings, e.g.,
• encode each node with a different ID
• cycle counts as augmented node features
• assigning anchor nodes and compute relative distance …

• Global attention/transformers
• …

MP-GNNs are not perfect, but in most cases, they are more than sufficient (in terms of
performance).

Graph Neural Network

Part III: Architectures and Training

4/10/2025 EC523, Spring 2025, Lecture 21 24

A Full GNN Framework

4/10/2025 EC523, Spring 2025, Lecture 21 25

downsampling ("pooling")
may be applied

Graph Pooling

4/10/2025 EC523, Spring 2025, Lecture 21 26

Goal: downsample the graph to obtain representations at a smaller scale.

Two typical forms:

DiffPool (NIPS 2018)
MinCutPool (ICML 2020)

Top-K Pool (ICML 2019)
SAGPool (ICML 2019)

Graph Pooling: cluster-based

4/10/2025 EC523, Spring 2025, Lecture 21 27

Graph Pooling: selection-based

4/10/2025 EC523, Spring 2025, Lecture 21 28

Supervised Learning

4/10/2025 EC523, Spring 2025, Lecture 21 29

Directly train the model for a specific task with ground truth label given

For example, in neuroimaging,

BOLD signal (rs-fMRI)

G
N

N

R
E

A
D

O
U

T

Severity Scores
Disease Status

(MSE, CE Loss)

interpret weights and make
biomarker conclusions

(mostly graph-level tasks)

Unsupervised Learning

4/10/2025 EC523, Spring 2025, Lecture 21 30

The most common idea: similar nodes should have similar embeddings.

e.g.,

and it boils down to defining what kind of "similarity" you want.

Other design principles:
• maximizing information/entropy
• obeying flow constraints, such as curl-free, energy-preserving
• reflecting causal relationship
• …

Graph Neural Network

Part IV: Non-MP GNN

4/10/2025 EC523, Spring 2025, Lecture 21 31

Spectral GNNs

Spectral Domain of Graphs

4/10/2025 EC523, Spring 2025, Lecture 21 33

Overview: in MPNNs, we focus on "the neighborhood of a node"

This is usually inefficient and cannot carry additional info.

New Idea: we move all operations to the spectral domain.

Graph Fourier Transform

4/10/2025 EC523, Spring 2025, Lecture 21 34

Euclidean Space Graphs

Fourier basis eigen-functions of
the Laplacian

eigen-functions of the
graph Laplacian

Fourier transform

Convolution

aggregation happens in
the frequency domain

Kernel Design Example 1/3

4/10/2025 EC523, Spring 2025, Lecture 21 35

Pick , so the filter becomes

Performance on MNIST dataset:

spatial

spectral

Kernel Design Example 1/3

4/10/2025 EC523, Spring 2025, Lecture 21 36

Problems:
• diagonalizing the Laplacian takes time
• # of parameters = N
• Not spatially localized: every dimension of the result is related to ALL nodes

1

2

5

43

Kernel Design Example 2/3

4/10/2025 EC523, Spring 2025, Lecture 21 37

Instead, if we pick

We will have
simpler
but still

only K+1 params

But it has spatial localization!

1

2

5

43

Kernel Design Example 2/3

4/10/2025 EC523, Spring 2025, Lecture 21 38

Instead, if we pick

We will have
simpler
but still

only K+1 params

But it has spatial localization!

1

2

5

43

Kernel Design Example 2/3

4/10/2025 EC523, Spring 2025, Lecture 21 39

Instead, if we pick

We will have
simpler
but still

only K+1 params

But it has spatial localization!

1

2

5

43

Kernel Design Example 2/3

4/10/2025 EC523, Spring 2025, Lecture 21 40

Instead, if we pick

We will have
simpler
but still

only K+1 params

But it has spatial localization!

1

2

5

43

Kernel Design Example 3/3

4/10/2025 EC523, Spring 2025, Lecture 21 41

Based on this idea, a more efficient kernel choice is discovered:

(Chebyshev polynomial)

This time, we don't even need to compute the power. Just do recursion:

(Time complexity:)

Different Laplacian

4/10/2025 EC523, Spring 2025, Lecture 21 42

Different Laplacian variants can add different information.

e.g. 1 Laplace-Beltrami Operator on a compact manifold:

e.g. 2 Higher-order Laplacian that can encode edge info

Graph Transformers

Self-attn as Message Passing

4/10/2025 EC523, Spring 2025, Lecture 21 44

Recall: for the self-attention update:

If we just focus on token 1:

We can see this as:
• Compute message from j:

• Compute Query from 1:

• Aggregate all messages:

Deviate a bit…

4/10/2025 EC523, Spring 2025, Lecture 21 45

If you are already content with this discovery, you will have:

Graph Transformers

4/10/2025 EC523, Spring 2025, Lecture 21 46

To become a transformer, we still need position encoding.

Idea: we use the adjacency information. Just consider the eigenvectors of the Laplacian

position encoding for node 2

What if we flip the sign?

Graph Transformers

4/10/2025 EC523, Spring 2025, Lecture 21 47

What if the graph has edge features? Do we just overwrite them with the attention?

Recall the (i,j) element from , it describes how much token j contributes to the
update of token i

Idea: we just add them together…

(NIPS 2020)

	Default Section
	Slide 1: Graph Neural Network
	Slide 2: Contents

	Introduction
	Slide 3: Graph Neural Network
	Slide 4: What is a Graph
	Slide 5: Data as Graphs
	Slide 6: ICLR Publication Trend
	Slide 7: Different Types of Tasks

	Basis of GCN
	Slide 8: Graph Neural Network
	Slide 9: How are graphs different 1/2
	Slide 10: How are graphs different 2/2
	Slide 11: Invariance and Equivariance
	Slide 12: Constructing a GNN
	Slide 13: Message Passing
	Slide 14: Message Passing
	Slide 15: More Examples…
	Slide 16: Implementation
	Slide 17: CNN as a special case of GNN
	Slide 18: A Closer Look: Deep layers
	Slide 19: A Closer Look: Expressivity
	Slide 20: A Closer Look: Expressivity
	Slide 21: A Closer Look: Expressivity
	Slide 22: A Closer Look: Expressivity
	Slide 23: A Closer Look: Expressivity

	Untitled Section
	Slide 24: Graph Neural Network
	Slide 25: A Full GNN Framework
	Slide 26: Graph Pooling
	Slide 27: Graph Pooling: cluster-based
	Slide 28: Graph Pooling: selection-based
	Slide 29: Supervised Learning
	Slide 30: Unsupervised Learning

	Untitled Section
	Slide 31: Graph Neural Network
	Slide 32
	Slide 33: Spectral Domain of Graphs
	Slide 34: Graph Fourier Transform
	Slide 35: Kernel Design Example 1/3
	Slide 36: Kernel Design Example 1/3
	Slide 37: Kernel Design Example 2/3
	Slide 38: Kernel Design Example 2/3
	Slide 39: Kernel Design Example 2/3
	Slide 40: Kernel Design Example 2/3
	Slide 41: Kernel Design Example 3/3
	Slide 42: Different Laplacian
	Slide 43
	Slide 44: Self-attn as Message Passing
	Slide 45: Deviate a bit…
	Slide 46: Graph Transformers
	Slide 47: Graph Transformers

