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Graph Neural Network

Part I:  Introduction
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What is a Graph
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Rigorously, a graph is an ordered pair 

edge
node

We use adjacency matrix and the Laplacian to algebraically represent the structure.
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Data as Graphs 
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what I am doing



ICLR Publication Trend
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…

2024



Different Types of Tasks
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graph-level regression/
classification

graph generation

node-level tasks 
(mostly classification)

structure identification
subgraph property prediction

link prediction/
edge feature engineering 

protein folding (predicting 
node 3D coordinates)

recommender systems
drug interaction

Google Map ETADrug Discovery

Patient status



Graph Neural Network

Part II:  Basic Principles
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How are graphs different 1/2
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Observation 1: graphs do not have a fixed notion of locality or sliding window.



How are graphs different 2/2
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Observation 2: graphs do not have a canonical node ordering.
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How do we want the output to be?



Invariance and Equivariance
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Observation 2: graphs do not have a canonical node ordering.

Invariance: permuting the input, the output stays the same.

or,

Equivariance: permuting the input, the output also gets permuted accordingly.

or,

Traditional NN architectures, e.g., MLPs, fail for graphs, as switching the order of input will 
lead to different outputs. 

Invariance/Equivariance can be achieved by passing and aggregating information from 
neighbors. This is the core of GNN. 



Constructing a GNN
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In each layer, a GNN aggregates neighboring node features.



Message Passing
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Mathematically, we can write the message passing rule as

Key ingredients:
• Message: each node computes a message.
• Aggregation:  aggregate message from neighbors.
• Update:  determine how to apply the aggregated message to target node.

Which part do you think is the hardest to implement? 



Message Passing
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Let's see a concrete example: (one of your homework questions!)

• Message:

• Aggregation:

• Update: 

Is this formulation invariant or equivariant? 



More Examples…
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Almost all current cutting-edge GNN designs are MPNNs:
• vanilla GCN (2017)
• GAT
• GraphSAGE
• GIN
• PNA
• EGNN
• …

We will discuss non-message-passing designs later.



Implementation
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You will need to implement a light-weight 
version of this class in HW5

(official class: ~1000 lines of code)



CNN as a special case of GNN
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Consider a CNN with 3x3 filter:

You don't necessarily need weight sharing
& You can pick any neighbor you want



A Closer Look: Deep layers
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Observation: Layer-k update gets info from nodes up to k-hops away.

Consider a simplified version of the general formulation: 

Then we will have 

As                 , This is called over-smoothing.

Are there specific choices that can avoid over-smoothing? 



A Closer Look: Expressivity
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A classical expressivity test is Graph Isomorphism.

A simpler problem: given a pair of nodes with different neighborhood structure, is there a
GNN that can always tell them apart?

Consider the extreme case where all nodes have the same feature. Computational graph 
for Node 1 and Node 2:



A Closer Look: Expressivity
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But GNN only see the node features but not IDs 

So, the updated features of node 1 and node 2 are still identical. 



A Closer Look: Expressivity
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Computational graphs for all nodes:

should produce 
identical features

should produce 
different features



A Closer Look: Expressivity
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Conclusion: The expressive power of GNNs depend on the expressive power of the 
aggregation function. Injective function leads to the most expressive GNN.

More in-depth Conclusion:
• MP-GNNs are at most as powerful as the WL test in distinguishing graph structures.
• One such GNN ("Graph Isomorphism Network", ICLR 2019):

• Examples that WL test (or equivalently, GIN) fails:
• Certain special structures
• Counting cycles in the graph



A Closer Look: Expressivity
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Workarounds:

• Higher-order WL tests: e.g., 
• 2-WL considers pairs of nodes – "hypergraphs"

• Positional/structural encodings, e.g.,
• encode each node with a different ID
• cycle counts as augmented node features
• assigning anchor nodes and compute relative distance …

• Global attention/transformers
• …

MP-GNNs are not perfect, but in most cases, they are more than sufficient (in terms of 
performance).



Graph Neural Network

Part III:  Architectures and Training
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A Full GNN Framework
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downsampling ("pooling") 
may be applied



Graph Pooling
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Goal: downsample the graph to obtain representations at a smaller scale.

Two typical forms:

DiffPool (NIPS 2018)
MinCutPool (ICML 2020)

Top-K Pool (ICML 2019)
SAGPool (ICML 2019)



Graph Pooling: cluster-based
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Graph Pooling: selection-based
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Supervised Learning
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Directly train the model for a specific task with ground truth label given

For example, in neuroimaging, 

BOLD signal (rs-fMRI)
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Severity Scores
Disease Status 

(MSE, CE Loss)

interpret weights and make 
biomarker conclusions 

(mostly graph-level tasks)



Unsupervised Learning
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The most common idea: similar nodes should have similar embeddings.

e.g.,

and it boils down to defining what kind of "similarity" you want. 

Other design principles:
• maximizing information/entropy
• obeying flow constraints, such as curl-free, energy-preserving
• reflecting causal relationship
• …



Graph Neural Network

Part IV:  Non-MP GNN
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Spectral GNNs



Spectral Domain of Graphs
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Overview: in MPNNs, we focus on "the neighborhood of a node" 

This is usually inefficient and cannot carry additional info.

New Idea: we move all operations to the spectral domain.



Graph Fourier Transform
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Euclidean Space Graphs

Fourier basis eigen-functions of 
the Laplacian

eigen-functions of the 
graph Laplacian

Fourier transform

Convolution

aggregation happens in 
the frequency domain



Kernel Design Example 1/3
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Pick                  , so the filter becomes 

Performance on MNIST dataset:

spatial

spectral



Kernel Design Example 1/3

4/10/2025 EC523, Spring 2025, Lecture 21 36

Problems:
• diagonalizing the Laplacian takes                time
•  # of parameters = N
• Not spatially localized: every dimension of the result is related to ALL nodes
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Kernel Design Example 2/3
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Instead, if we pick                

We will have
simpler
but still 

only K+1 params

But it has spatial localization!
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Kernel Design Example 2/3
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Instead, if we pick                

We will have
simpler
but still 

only K+1 params

But it has spatial localization!
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Kernel Design Example 2/3
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Instead, if we pick                

We will have
simpler
but still 

only K+1 params

But it has spatial localization!
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Kernel Design Example 2/3
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Instead, if we pick                

We will have
simpler
but still 

only K+1 params

But it has spatial localization!
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Kernel Design Example 3/3
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Based on this idea, a more efficient kernel choice is discovered:

(Chebyshev polynomial)

This time, we don't even need to compute the power. Just do recursion:

(Time complexity:                 )



Different Laplacian
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Different Laplacian variants can add different information.

e.g. 1 Laplace-Beltrami Operator on a compact manifold:

e.g. 2 Higher-order Laplacian that can encode edge info



Graph Transformers



Self-attn as Message Passing
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Recall: for the self-attention update:

If we just focus on token 1:

We can see this as:
• Compute message from j:

• Compute Query from 1: 

• Aggregate all messages:



Deviate a bit…
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If you are already content with this discovery, you will have:



Graph Transformers
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To become a transformer, we still need position encoding.

Idea: we use the adjacency information. Just consider the eigenvectors of the Laplacian 

position encoding for node 2

What if we flip the sign?



Graph Transformers
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What if the graph has edge features? Do we just overwrite them with the attention? 

Recall the (i,j) element from           , it describes how much token j contributes to the 
update of token i 

Idea: we just add them together…

(NIPS 2020)
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