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Graph Neural Network

Part I: Introduction
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Rigorously, a graph is an ordered pair

G=(V,E)

node{1,2,...,n}

4/10/2025

What is a Graph

(2
edge {(¢,7) : i, € V} ° O

We use adjacency matrix and the Laplacian to algebraically represent the structure.
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Data as Graphs
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ICLR Publication Trend

Top 50 keywords 2024

Keyword Count 50 MOST APPEARED KEYWORDS (2023)
reinforcement learning
Large Language Models 318 deep learning
graph neural netwo |
Reinforcement Learning 201 federate learning

self-supervised learning
contrastive learning

Graph Neural Networks 123 e R

continual learnin

I
Diffusion Models 112 neralneto
Deep Learning 110
Foundation Mocdets 20 50 MOST APPEARED KEYWORDS (2022)
. reinforcement learning
Leamlng Theﬂw 19 graph neural networ
. . ) transformékld'
Online Learning 19 self-supervised leaming

generative mode
robustness ————————
I

Instruction Tuning 19 contrastive learning
QEI"IBI"EIIIZEHIU_E

e aral e

Variational Inference 19
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Different Types of Tasks

graph-level regression/
classification

Patient status

graph generation
Drug Discovery

4/10/2025
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node-level tasks
(mostly classification)

protein folding (predicting
node 3D coordinates)

structure identification
subgraph property prediction
Google Map ETA

link prediction/
edge feature engineering

recommender systems
drug interaction
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Graph/NeuraI Nefcwork

Part Il: Basic Principles
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How are graphs different 1/2

Observation 1: graphs do not have a fixed notion of locality or sliding window.
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Observation 2: graphs do not have a canonical node ordering.

How are graphs different 2/2

0 1
1 0
A1_11
0 0
0 1
1 0
A2_01
0 1

How do we want the output to be?
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Invariance and Equivariance

Observation 2: graphs do not have a canonical node ordering.

Invariance: permuting the input, the output stays the same.

f(A1, X1) = f(A2,X5) o, f(A,X)=f(PAP', PX)
Equivariance: permuting the input, the output also gets permuted accordingly.

f(A1,X1) = Pf(As, X3) or, Pf(A,X) = f(PAPT,PX)

Traditional NN architectures, e.g., MLPs, fail for graphs, as switching the order of input will
lead to different outputs.

Invariance/Equivariance can be achieved by passing and aggregating information from
neighbors. This is the core of GNN.
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Constructing a GNN

In each layer, a GNN aggregates neighboring node features.
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Message Passing

Mathematically, we can write the message passing rule as

XE @ ({b@ (Xzaxj:ej 1)

JEN (2)

Key ingredients:
* Message: each node computes a message.
* Aggregation: aggregate message from neighbors.

determine how to apply the aggregated message to target node.

Which part do you think is the hardest to implement?

4/10/2025 EC523, Spring 2025, Lecture 21
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Message Passing

Let's see a concrete example: (one of your homework questions!)
(I+1) _ (1) (1) (1) (1)
X, =relu | W'W'x,~ + E eijo X
JEN (%)
* Message: Wz.(”xi, BijW;l)X§l)

e Aggregation: Z
JEN(4)

relu(---—l—---)

Is this formulation invariant or equivariant?
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More Examples...

Almost all current cutting-edge GNN designs are MPNNs:
e vanilla GCN (2017)

 GAT

* GraphSAGE
 GIN

* PNA

* EGNN

We will discuss non-message-passing designs later.
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Implementation

# / torch_geometric.nn ; conv.MessagePassing

You will need to implement a light-weight

version of this class in HW5
conv.MessagePassing

(official class: ~1000 lines of code)

class MessagePassing ( aggr: Optional[Union[str, List[str], Aggregation]] = 'sum’, *, aggr_kwargs:
Optional[Dict[str, Any]] = None, flow: str = 'source_to_target', node_dim: int = =2,
decomposed_layers:int=1) [source]

propagate ( edge_index: Union[Tensor, SparseTensor], size: Optional[Tuple[int, int]] = None,
**kwargs: Any ) = Tensor  [source]

The initial call to start propagating messages.

message ( x_j: Tensor ) = Tensor  [source]

Constructs messages from node j to node t in analogy to ¢@ for each edge in edge_index .
This function can take any argument as input which was initially passed to propagate() .

Furthermore, tensors passed to propagate() can be mapped to the respective nodes ¢ and j
by appending _i or _j to the variable name, .e.3. x i and x_j .

aggregate ( inputs: Tensor, index: Tensor, ptr: Optional[Tensor] = None, dim_size: Optional[int]
=None ) — Tensor  [source]

Aggregates messages from neighbors as @ JEN ()"

Takes in the output of message computation as first argument and any argument which was
initially passed to propagate() .
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CNN as a special case of GNN

Consider a CNN with 3x3 filter:

JEN3x3

You don't necessarily need weight sharing
& You can pick any neighbor you want
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A Closer Look: Deep layers

Observation: Layer-k update gets info from nodes up to k-hops away.

Consider a simplified version of the general formulation:

do (X, X, ej,z') = Wx; vo (xi, @ (1) =0((1 —a)Ux; + « E Wx;)
JEN (1) JEN(7)
Then we will have

X*D) = 5((1 — ) X®U + aAXFW)

As k — oo, Xkt _y x(k) This is called over-smoothing.

Are there specific choices that can avoid over-smoothing?
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A Closer Look: Expressivity

A classical expressivity test is Graph Isomorphism.

A simpler problem: given a pair of nodes with different neighborhood structure, is there a
GNN that can always tell them apart?

Consider the extreme case where all nodes have the same feature. Computational graph
for Node 1 and Node 2:

O,

(¢

/ 3 2 5 1 5
ARG AR
1 5 1 2 4 2 5 1 2 4
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A Closer Look: Expressivity

B .

But GNN only see the node features but not IDs

So, the updated features of node 1 and node 2 are still identical.
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A Closer Look: Expressivity

B .

Computational graphs for all nodes:

should produce
identical features

\

should produce
different features
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A Closer Look: Expressivity

Conclusion: The expressive power of GNNs depend on the expressive power of the
aggregation function. Injective function leads to the most expressive GNN.

More in-depth Conclusion:
* MP-GNNs are at most as powerful as the WL test in distinguishing graph structures.
* Onesuch GNN ("Graph Isomorphism Network", ICLR 2019):

hik) — MLP®) ((1 _|_€(k')) hik—1) 4 Z hlk—1) ) _

weN (v)

* Examples that WL test (or equivalently, GIN) fails:
e Certain special structures ) ) .
. . NG N "
* Counting cycles in the graph ‘ ‘ ; |

\
B\\D/F\‘H/J B“‘xo/
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A Closer Look: Expressivity

Workarounds:

Higher-order WL tests: e.g.,

e 2-WL considers pairs of nodes — "hypergraphs"
Positional/structural encodings, e.g.,

* encode each node with a different ID

e cycle counts as augmented node features

* assigning anchor nodes and compute relative distance ...
Global attention/transformers

MP-GNNs are not perfect, but in most cases, they are more than sufficient (in terms of
performance).
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Graph Neural Network

Part I11: Architectures and Training
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A Full GNN Framework

............. ..’ ” T

A F— ey U HE e 4 /' Dataset split
: /o ¢ /) ® /i g ‘e /®
: & & o : o

Evaluation
metrics
Input Graph Node
Graph Neural embeddings /\
Network
Prediction .
e * D . > —{ Predictions Labels
o . I]G/b\[l R head
p » Je ® ./;/. | \/
& . ..-.. e I] [l I] :
e ! Loss
: function
:
downsampling ("pooling")
may be applied
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Graph Pooling

Goal: downsample the graph to obtain representations at a smaller scale.

Two typical forms:

-

(a) Cluster-based pooling ' (b) Selection-based pooling
DiffPool (NIPS 2018) Top-K Pool (ICML 2019)
MinCutPool (ICML 2020) SAGPool (ICML 2019)
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Graph Pooling: cluster-based

B
Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification
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Graph Pooling: selection-based

sigmoid

L"EEL - -

X£+1
T topk
1 T
Af+1
Inputs Projection Top k Node Selection Gate Outputs
y = X'/ 19, e RV X! = X'(idx, 1), € RO
idx = rank(y, k), € RF A = A'(idx, idx), € RM
7 = sigmoid(y(idx)), e R” X = xt o (71%), € RMC,
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Supervised Learning

Directly train the model for a specific task with ground truth label given

For example, in neuroimaging, (mostly graph-level tasks)

5 P : L
1Y - T (N W |

BOLD signal (rs-fMRI) igam T A A4

f interpret weights and make
i biomarker conclusions
(= _
p 3 Severity Scores
— ([Z| — | A .
o < Disease Status
o

(MSE, CE Loss)
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Unsupervised Learning

The most common idea: similar nodes should have similar embeddings.

e.g., L= Z CE (Yuv, 2, 2v)

zu '.r‘z'U

and it boils down to defining what kind of "similarity" you want.

Other design principles:

* maximizing information/entropy

* obeying flow constraints, such as curl-free, energy-preserving
* reflecting causal relationship

4/10/2025 EC523, Spring 2025, Lecture 21
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Graph Neural Network

Part I\VV: Non-MP GNN
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Spectral GNNs



Spectral Domain of Graphs

Overview: in MPNNs, we focus on "the neighborhood of a node"
Ns(j) ={1€Q:W;; >4}

This is usually inefficient and cannot carry additional info.

New Idea: we move all operations to the spectral domain.

uo u1 us50
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Graph Fourier Transform

Euclidean Space Graphs
Fourier basis eigen-functions of eigen-functions of the
the Laplacian graph Laplacian
N
Fourier transform  f(w) = / F(t) exp(—iwt)dt FO) =) fli)u(i)
i=1
Convolution F_l{f(w)ib(w)} U((UTf) © (UTh)>
FT filterin ~ IFT ~
== UTfr "= hUTf = UhgU'f
\ J
Y

aggregation happensin
the frequency domain
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spatial

spectral

S
Pick hg(\;) = 6;, so the filter becomes
01
}l@ —
Performance on MNIST dataset:
method Parameters | Error method Parameters | Error
Nearest Neighbors N/A 4.11 Nearest Neighbors N/A 19
400-FC800-FC50-10 3.6-10° 1.8 4096-FC2048-FC512-9 107 5.6
400-LRF1600-MP800-10 7.2-10% 1.8 4096-LRF4620-MP2000-FC300-9 8-10° 6
400-LRF3200-MP800-LRF800-MP400-10 1.6-10° 1.3 4096-LRF4620-MP2000-LRF500-MP250-9 2.105 6.5
400-SP1600-10 (d; = 300, g = n) 3.2.10° 2.6 4096-SP32K-MP3000-FC300-9 (d; = 2048, g = n) 9.10° 7
400-SP1600-10 (d; = 300, g = 32) 1.6- 108 2.3 4096-SP32K-MP3000-FC300-9 (d; = 2048, g = 64) 9.10° 6
400-SP4800-10 (d; = 300, g = 20) 5.103 1.8
35
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Kernel Design Example 1/3
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Kernel Design Example 1/3

Problems:
« diagonalizing the Laplacian takes O(N?®) time
e # of parameters =N
* Not spatially localized: every dimension of the result is related to ALL nodes

2 -1 0 0 -1
O-©® L [hru
L= 0o -1 1

-1 0 0

o O O

e 3.363  —-0.819 -0.205 -0.205 -1.135
—-0.819 3.977 —-0977 —-0.977 —0.205

UhoUT = | —0.205 —0.977 2.614 —0.386 —0.046 |, with hy = diag{1,2,3,4,5}
—0.205 —0.977 —0.386 2.614 —0.046

—1.135 —-0.206 —0.046 —0.046 2.432

4/10/2025 EC523, Spring 2025, Lecture 21 36



Kernel Design Example 2/3

Instead, if we pick fzg()\i) =0y + 01\ +---+ QKAf
simpler
We will have [- but still O(N?)

K K K
UhoU" = U(ZéjAj)UT => 0, (UAjUT) => ;L

=0 =0 j=0

’ ’ A\_, only K+1 params

But it has spatial localization!

UhoUT =

7 @ @
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Kernel Design Example 2/3

Instead, if we pick hg(\;) = 0y + 61X + - - - + O AE
simpler

but still O(N?)
K K K
UhoU' = U(Z@-Aj)UT — Z@-(UAjUT) — Ze-Lﬂ'f
0 — J — J — J

J=0 J=0

We will have

But it has spatial localization!

00 + 201 —(91 0 0 —61
—th 0o + 301 —01 —bt1 0
U}ALQUT = 0 —604 0y + 01 0 0
0 —60, 0 0y + 01 0 e
] 0 0 0 bh+61 | /
4/10/2025 EC523, Spring 2025, Lecture 21 38
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Kernel Design Example 2/3

Instead, if we pick hg(\;) = 0y + 61X + - - - + O AE
simpler

but still O(N?)
K K K
UhoU' = U(Z@-Aj)UT — Z@-(UAjUT) — Ze-Lﬂ'f
0 — J — J — J

J=0 J=0

We will have

But it has spatial localization!

[ Op+20, —0y 0 0 —0;
) —91 ‘90 + 301 —91 —91 0 ‘
UhoU' = 0 —0, G+ 0, 0 0
0 —60, 0 0y + 01 0 e
] 0 0 0 bh+61 | /
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Kernel Design Example 2/3

Instead, if we pick hg(\;) = 0y + 61X + - - - + O AE
simpler

but still O(N?)
K K K
UhoU' = U(Z@-Aj)UT — Z@-(UAjUT) — Ze-Lﬂ'f
0 — J — J — J

J=0 J=0

We will have

But it has spatial localization!

[ O +20,  —0; 0 0 —0;
—04 6o + 301 —01 —04 0
U}ALQUT = 0 —04 0y + 01 0 0
0 —60, 0 0y + 01 0 e
] 0 0 0 bh+61 | /
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Kernel Design Example 3/3

B O ——S—S
Based on this idea, a more efficient kernel choice is discovered:
h@ (>\z> = HOT()()\Z) + (91T1()\z) + -+ HKTK<)\7,) (Chebyshev ponnomiaI)
This time, we don't even need to compute the power. Just do recursion:
roo_ T nx1 r _ 9T F r ) )
fe =Te(L)f €R™™ "~ fip =2Lfk—1 — fr—2 (Time complexity: O(K|E|))
Accuracy
Dataset  Architecture Non-Param (2)  Spline (7) [4] Chebyshev (4) 1400 ; ; ;
MNIST GC10 95.75 97.26 97.48 1200 ®—® Chebyshev A
MNIST GC32-P4-GC64-P4-FC512 96.28 97.15 99.14 1000 %" Non-Param / Spline
Table 3: Classification accuracies for different types of spectral filters (K = 25). :En_ 800t L7 -
2 600l o
Time (ms) = Pr
Model Architecture CPU GPU Speedup 400} e
Classical CNN C32-P4-C64-P4-FC512 210 31 6.77x 200¢ e
Proposed graph CNN  GC32-P4-GC64-P4-FC512 1600 200  8.00x 0=l — : , .
2000 4000 6000 8000 10000 12000

Table 4: Time to process a mini-batch of S = 100 MNIST images.
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B a

Different Laplacian

Different Laplacian variants can add different information.

e.g. 1 Laplace-Beltrami Operator on a compact manifold:

(a) signal (b) k=1

P ravay,

Sa

2
IR

<)
AN
ASYATLY )0
Pt
OO

LY AV.AN, N
RO

e.g. 2 Higher-order Laplacian that can encode edge info

4/10/2025 EC523, Spring 2025, Lecture 21 42

7 S TTTT——



Graph Transformers



Self-attn as Message Passing

Recall: for the self-attention update:
Attn(X) = Softmax(QK ')V Q=XWy, K=XWg, V=XWy

If we just focus on token 1:

N
21 — Z SOftman (q;rkj)’[)j
Jj=1
We can see this as:
- Compute message fromj v; = Wyx,;, k; =Wgkx;

« Compute Query from1: ¢1 = Woz,
N

* Aggregate all messages: (P(q1,{4;}) = ) _ Softmax; (¢, k;) v;

j=1
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Deviate a bit...

If you are already content with this discovery, you will have:

4/10/2025

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Velickovic¢* Guillem Cucurull*
Department of Computer Science and Technology Centre de Visid per Computador, UAB
University of Cambridge gcucurull@gmail.com

petar.velickovic@est.cam.ac.uk

Arantxa Casanova* Adriana Romero

Centre de Visi6 per Computador, UAB Montréal Institute for Learning Algorithms
ar.casanova.8@gmail.com adriana.romero.soriano@umontreal.ca
Pietro Lio Yoshua Bengio

Department of Computer Science and Technology  Montréal Institute for Learning Algorithms
University of Cambridge yoshua.umontreal@gmail.com

pietro.licfcst.cam.ac.uk
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Graph Transformer

To become a transformer, we still need position encoding.

Idea: we use the adjacency information. Just consider the eigenvectors of the Laplacian

P1 P2 ¢3
v, 058 0 0
vy |0.98 0 0
vs |0.58 0 0
va 10.00 —-0.71 -—-0.71
vs L0.00 —-0.71 0.71

What if we flip the sign?

4/10/2025

Lo = A\

P4 P
0.77 0.30 T
—0.12 —-0.81
—0.64 0.51

0 0

0 0

EC523, Spring 2025, Lecture 21

position encoding for node 2

46

. TS



Graph Transformers

Recall the (i,j) element from QK" , it describes how much token j contributes to the
update of token i

What if the graph has edge features? Do we just overwrite them with the attention?

Idea: we just add them together...

Do Transformers Really Perform Bad
for Graph Representation?

Chengxuan Ying'; Tianle Cai’, Shengjie Luo®;
Shuxin Zheng*! Guolin Ke*, Di He'! Yanming Shen', Tie-Yan Liu*
IDalian University of Technology  ?Princeton University
3Peking University “Microsoft Research Asia
yingchengsyuan@gmail.com, tianle.cai@princeton.edu, luosj@stu.pku.edu.cn
{shuzt guoke, dihet tyliu}@microsoft.com, shen@dlut.edu.cn (N I PS 2020)
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