Background

Translation Surfaces : A 3D surface obtained through "gluing" the sides of a 2D polygon together.

Fig. 1: How an unit square becomes a torus.

Matrix Transformations : Matrices that can act upon translation surfaces to change them.

Fig. 2: How an unit square becomes a torus.

Two surfaces are in the same strata if you can cut and paste parts to make them the same.

Fig. 3: Surfaces in the same strata.

Genus : The number of holes in a translation surface.

Fig. 4: Genus-2.

Cone Points : Cone points are areas of extra angle caused by trying to "glue" a polygon with over 2π radians of angle.

Fig. 5: An image of a square and an octagon.

Surfaces with the same number of cone points, same excess angle at cone points, and same genus are in the same strata.

VECTORS OF SMALLEST SLOPE Jake Neau, Mele Pluviose, Arden Kim, Mariya Siddiqui Madison Experimental Mathematics Lab

Saddle Connections : Straight lines connecting cone points that do not sect any other cone points. Saddle connections are an ordered list of vect

Fig. 6: Saddle connections on an unit square

Methods

Horocycle Flow: We use a matrix, h_s , to analyze saddle connections.

$$h_s = \begin{bmatrix} 1 & 0\\ -s & 1 \end{bmatrix}$$

When s is the vector slope, the vector becomes horizontal. When the san used, slope differences are preserved.

Transversal : The set of all translation surface with a horizontal connection of length less than or equal to one.

Golden L : Translation surface obtained from an L-shaped polygon b ing opposite sides by horizontal and vertical translations.

Four surfaces come as a result of cutting pasting parts of the Golden L. Using the variables of *a,b,v,u,x*, we try to determine translation surfaces and which shapes among B, Q, D, P is referenced to.

t inter- tors.	Coding
	There are two coding approaches we are taking: 1. A visual 3D "Ball In A Box" approach.
	 Shoot an elements from many different angles on each saddle content
	 Trace the path of elements across a translation surface making su around sides when applicable
	 When an element strikes another (or the same) saddle connecti the slope of its path
	 Once all slopes are gathered, check them all for a horizontal of that is less than or equal to one, and find the smallest slope
	 This allows us to do analysis on many types of translation surface are not just limited to the four we are studying
	2. An interactive slider in which the user can make new shapes from I
	 We start by asking the user to explicitly define what a, b, x, v, and
	 The user must choose what type of shape they want
	 A list of all possible smallest slopes have been calculated by han type of surface depending on what a, b, x, v, and u are.
	 Figure out a list of slopes from these equations, and analyze th the smallest slope of horizontal component of less than or equal
ne s is	 Put the surface under horocycle flow according to this found slop
saddle	 Paste the new translated surface back into one of the four main perform the calculations again
	 We have a early stage interactive demo for how this could work
oy glu-	<pre>if a <= 0 or b <= 0 or x <= 0 or u <= 0 or v <= 0 : return None if u > z: return None if u > x: return None if v >= b:</pre>
	return None

References

[array([0., 0.]), array([9., 0.]), array([9., 5.]), array([11., 8.]), array([11., 14.]), array([2., 14.]), array([2., 8.]), array([2., 3.])]

[1] Jayadev Athreya, Jon Chaika, and Samuel Lelièvre. "The gap distribution of slopes on the golden L". In: (Aug. 2013). DOI: 10.1090/conm/631/12595.

-

- [2] Jayadev S. Athreya and Yitwah Cheung. "A Poincaré Section for the Horocycle Flow on the Space of Lattices". In: International Mathematics Research Notices 2014.10 (Jan. 2013). _eprint: https://academic.oup.com/imrn/article-pdf/2014/10/2643/18853800/rnt003.pdf, pp. 2643-2690. ISSN: 1073-7928. DOI: 10.1093/imrn/rnt003. URL: https://doi.org/10. 1093/imrn/rnt003.
- [3] Caglar Uyanik and Grace Work. "The Distribution of Gaps for Saddle Connections on the Octagon". In: International Mathematics Research Notices 2016 (Oct. 2016). DOI: 10.1093/ imrn/rnv317.
- [4] Grace Work. A Transversal for horocycle flow on H(2). 2016. DOI: 10.48550/ARXIV.1607. 05777.URL: https://arxiv.org/abs/1607.05777.

onnection sure to loop ion, record component ces, so we B, Q, D, P. id u are nd for each

nem to find to one)e

types and

