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Abstract. We propose a lesion-aware graph neural network (LEGNet)
to predict language ability from resting-state fMRI (rs-fMRI) connectiv-
ity in patients with post-stroke aphasia. Our model integrates three com-
ponents: an edge-based learning module that encodes functional connec-
tivity between brain regions, a lesion encoding module, and a subgraph
learning module that leverages functional similarities for prediction. We
use synthetic data derived from the Human Connectome Project (HCP)
for hyperparameter tuning and model pretraining. We then evaluate the
performance using repeated 10-fold cross-validation on an in-house neu-
roimaging dataset of post-stroke aphasia. Our results demonstrate that
LEGNet outperforms baseline deep learning methods in predicting lan-
guage ability. LEGNet also exhibits superior generalization ability when
tested on a second in-house dataset that was acquired under a slightly
different neuroimaging protocol. Taken together, the results of this study
highlight the potential of LEGNet in effectively learning the relationships
between rs-fMRI connectivity and language ability in a patient cohort
with brain lesions for improved post-stroke aphasia evaluation.

Keywords: Lesion-aware modeling · Graph neural networks · Func-
tional connectivity · Data augmentation · Aphasia prediction.

1 Introduction

Stroke is one of the major causes for disability worldwide [7], with approxi-
mately one-third of stroke survivors affected by speech and language impair-
ments, known as aphasia [1]. Resting-state fMRI (rs-fMRI) captures steady-
state patterns of co-activation in the brain and provides a unique glimpse into
the altered brain network organization due to the stroke [5]. Exploring this re-
lationship is crucial for understanding the mechanisms underlying aphasia and
for developing effective, personalized treatment strategies. However, developing
models that can simultaneously accommodate patient-specific changes in func-
tional connectivity due to a lesion (i.e., the stroke area) and use this information
to predict generalized language impairments remains an open challenge.
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Prior studies have attempted to predict language ability using neuroimaging
data. The earliest work [17] developed a stacked random forest (RF) model that
performed feature selection across multiple modalities and then used these fea-
tures to predict the composite Aphasia Quotient scored from the revised Western
Aphasia Battery, i.e., WAB-AQ [10]. Another study [11] used support vector re-
gression (SVR) to predict WAB-AQ by stacking features from functional MRI,
structural MRI, and cerebral blood flow data. Recent work [3] proposed a su-
pervised learning method for feature selection and fusion methods to integrate
features from different modalities and predicted WAB-AQ using RF and SVR.
An earlier study [2] used similar multimodal ML methods to predict treatment
response, rather than baseline functionality. Finally, Wang et al. [21] used per-
sistent diagrams derived from patient rs-fMRI to identify aphasia subtypes [21].
While these studies represent seminal contributions, they largely treat the data
as a “bag of features" and do not fully capitalize on network-level information.

We propose to address this gap with Graph neural networks (GNN), which
represent the brain as a graph, where nodes correspond to regions of interest
(ROIs) and edges represent functional connections between ROIs. Convolutions
on the graph aggregate information from neighboring nodes or edges. They can
be node-based, as seen in models like BrainGNN [12], GAT [20], and GIN [23], or
edge-based, as formulated in the BrainNetCNN [9] and the HGCNN [8] models.
GNNs have shown superior performance compared to traditional machine learn-
ing techniques in predicting cognitive outcomes related to autism [4,12], aging
and intelligence [8], Alzheimer’s Disease [25], and ADHD [26]. However, these
applications revolve around intact brain networks, which is not the case for a
large lesion caused by stroke. Previous work [15,16] took the approach of mask-
ing out the lesioned ROIs from the input data. However, this strategy ignores
the possibility of informative brain signals from around the lesion boundary. An-
other challenge is the limited availability of rs-fMRI data from stroke patients.
One approach is to reduce the number of features in the analysis [3,11,17]. How-
ever, feature selection may inadvertently remove key information in the data,
and prior studies have not been diligent about cleanly separating data used for
feature selection from that used for performance evaluation [2,17].

In this paper, we introduce a novel lesion-aware edge-based GNN model,
which we call LEGNet, that uses rs-fMRI connectivity to predict language abil-
ity in patients with post-stroke aphasia. LEGNet is designed to aggregate infor-
mation from neighboring edges of the brain graph, thus aligning with both the
nature of rs-fMRI connectivity and the distributed interactions that contribute
to language performance. We incorporate lesion information into LEGNet by
encoding the stroke size and position into the model and by using this encod-
ing to constrain the graph convolution process. To address data scarcity, we
draw from the approach of [14] and develop a comprehensive data augmentation
strategy that inserts an “artificial lesion" into healthy neuroimaging data and
simulates the corresponding impact on rs-fMRI connectivity and language abil-
ity. We demonstrate that LEGNet outperforms baseline deep learning methods
on two in-house datasets of patients with post-stroke aphasia.
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Fig. 1. The Lesion-aware Edge-based BrainGNN Model. Top: Edge-to-edge message
passing and edge-to-node aggregation. Bottom Left: Patient-specific lesion size and
position encoding. Bottom Right: Subgraph updating and language prediction.

2 Lesion-Aware GNN with Simulated Training Data

2.1 LEGNet Model Architecture

An overview of our LEGNet model architecture is shown in Fig. 1. LEGNet is
designed to bridge the gap between the region- or node-based characterization of
a lesion and rs-fMRI connectivity, which is defined on edges. As seen, our model
includes three components: an edge-based learning module, a lesion encoding
module, and a subgraph learning module that connects the two viewpoints.

Formally, let N be the number of ROIs in the brain. The input to LEGNet is
the patient rs-fMRI connectivity X ∈ RN×N , which is obtained by exponentiat-
ing the correlation matrix computed from the mean time series of non-lesioned
voxels within each ROI, as introduced in [15]. If the entire ROI lies within the le-
sion, then the time series is zero. The entries of X can be viewed as edge features
in the underlying brain graph defined on the ROIs.

Edge-Based Learning: From the input X, LEGNet first performs an edge-to-
edge convolution [9] given by the following relationship:

Hij = ϕ

( ∑
n∈N (i)

rnXin +
∑

n∈N (j)

cnXnj

)
, (1)

where Hij ∈ Rd0 is the feature map of edge (i, j), N (i) is the set of neighboring
nodes to ROI i, including i itself, rn ∈ Rd0 and cn ∈ Rd0 are the learnable filters
for each node n, and ϕ is an activation function that is applied element-wise.
Intuitively, Eq. (1) aggregates the connectivity information along neighboring
edges that share the same end-nodes and updates the edge features accordingly.

Following this step, LEGNet maps the edge features back into the node space:

h
(1)
i = ϕ

( ∑
n∈N (i)

gnHin + b1

)
, i = 1, 2, . . . , N, (2)

where h
(1)
i ∈ Rd1 is the feature map of node i, gn ∈ Rd1×d0 is the learnable

filter, and b1 ∈ Rd1 is the learnable bias term from [9].
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Lesion Encoding: The LEGNet lesion encoding module captures the size and
position of the stroke for downstream processing. This is done by computing the
percentage of spared gray matter pi in each ROI i. We use this information to
construct the diagonal lesion embedding matrix L ∈ RN×N for each patient:

L =

 | | |
L1 L2 · · · LN

| | |

 =

p1 . . .
pN

 , (3)

If an ROI is intact, then pi = 1 to indicate no lesion; otherwise, 0 ≤ pi < 1.

Subgraph Learning: At a high level, the subgraph learning module divides
the nodes/ROIs into k subgroups based on their lesion encoding information
and their (learned) contributions to the final prediction. First, LEGNet uses the
lesion encoding L to update the node representations via:

h
(2)
i = ϕ

( ∑
j∈N (i)

Wjh
(1)
j

)
, i = 1, 2, . . . , N, (4)

where h
(2)
i ∈ Rd2 is the updated representation for node i, and, inspired by [12],

the filters Wj ∈ Rd2×d1 are parameterized using the lesion matrix L as follows:

vec(Wj) = Θ2 · ψ(Θ1Lj) + b2. (5)

The learnable parameters Θ2 ∈ Rd2d1×k and Θ1 ∈ Rk×N are shared across all
regions and all subjects. The bias term is b2, and ψ an activation function.

The assignment score for each node j is computed as ψ (Θ1Lj) and depends
on its lesion embedding. The score indicates the involvement of node j in each
subgraph. In this way, ROIs with similar lesion information and functionality
are grouped together and updated with similar filters. Following the subgraph
learning, the updated node features h(2)

i are fed into a fully connected layer, with
dimension d3, to predict the scalar WAB-AQ, which quantifies language ability.

Training Loss: We train LEGNet using the mean squared error between the
actual ym and predicted ŷm language performance for each subject m, together
with a ridge regularization term on the network filters:

ℓ =
1

M

M∑

i=1

(ŷi − yi)
2 + λR(Θ1,Θ2,b1,b2, r, c,g), (6)

where M is the total number of subjects and R is an L2−norm.

2.2 Synthetic Data Generation for Model Pre-Training

Given the heterogeneity of stroke, we pre-train LEGNet using a large simu-
lated dataset. This pre-trained model is then fine-tuned using our small patient
dataset. Our strategy is to insert “artificial lesions" into the neuroimaging data of
healthy subjects and simulate its impact on rs-fMRI connectivity and language.
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Fig. 2. Synthetic data generation workflow. (a) Artificial lesions are created to lie
within a single arterial territory. (b) Language score density is adjusted after the
lesion augmentation. (c) Functional connectivity is corrupted in the lesioned area.

Our pipeline for generating synthetic data is shown in Fig. 2. We first simulate
a unique structural lesion for each subject based on the following rules: (1) lesions
are left-hemisphere only; (2) lesions are placed randomly but do not cross arterial
territories [13]; (3) lesion sizes range from 5% to 20% of one arterial territory; (4)
lesions are spatially continuous and simply-connected (i.e., without holes in the
inside). Next, the artificial lesion is used to mask out voxels when computing ROI
mean time series. We also diminish and add Gaussian noise to the connectivity
represented in X between the lesioned region and the rest of the brain, followed
by clipping the values to lie within the original connectivity range. Finally, the
language performance score is re-scaled proportional to the percentage spared
gray matter (< 1) to simulate the negative impact of the lesion on functionality.

2.3 Implementation Details

Simulated-Lesion HCP (HCP-SL): We use rs-fMRI data from 700 randomly
selected subjects in the Human Connectome Project (HCP) S1200 database [19]
as the foundation for generating synthetic data. Following the standard HCP
minimal preprocessing pipeline [18], we parcellate the brain into 246 ROIs using
the Brainnetome atlas [6]. The subject language score is accuracy in answering
simple math and story-related questions during an fMRI language task. Artificial
lesions are inserted and modify the data as described in Section. 2.2.

Pre-training: Pre-training is done via 10-fold cross validation (CV). We use a
two-stage grid search to fix the model hyperparameters {λ, k, d0, d1, d2, d3}, with
a coarse stage used to select a suitable power of 2 from 21 to 26, followed by a
fine stage with increments of 1-2. The regularizer λ is swept across [10−4, 1]. The
final values are {λ = 0.005, k = 8, d0 = 4, d1 = 8, d2 = 2, d3 = 8}. We use the
Adam optimizer with learning rate starting from 0.01 and decaying by a factor
of 0.95 every 20 steps. Early stopping is also applied based on the validation loss.
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Once the hyperparameters are selected, we pre-train the LEGNet architecture
in order to provide a better model initialization for our stroke datasets.4

Application to Post-Stroke Aphasia: We use repeated 10-fold CV on our
larger in-house dataset (see Section 3.1) to evaluate the performance of LEGNet
in a real-world setting. The hyperparameters and optimizations are fixed at
the values determined during the pre-training phase on synthetic data. The
same procedure is applied to all baseline methods. We compare two scenarios:
(1) training the models (LEGNet and baselines) from scratch, and (2) using the
pre-trained model as the initialization for our repeated CV experiment.

Cross-Dataset Generalization: As further validation, we quantify the lan-
guage ability prediction performances when the models (LEGNet and baselines)
are trained on DS-1 and applied to our second in-house dataset (DS-2) which
has slightly different patient characteristics than DS-1.

2.4 Baseline Models

We compare LEGNet with four baseline approaches. The first baseline is a modi-
fied BrainGNN model (BrainGNN†) [12], which uses the same subgraph learning
modules but does not perform edge-based learning or incorporate lesion infor-
mation. The second baseline is BrainNetCNN model [9] with ROIs masked from
the rs-fMRI connectivity input if the percentage of spared gray matter is less
than 0.3 (BNC-masked). The third baseline is the BrainNetCNN with a two-
channel input, with one channel being the unaltered rs-fMRI connectivity and
the second channel being a lesion mask (BNC-2channel). The final baseline is
support vector regression (SVR) with the lower-triangle of the rs-fMRI connec-
tivity matrix used as the input feature vector. The baseline models inherit the
appropriate subset of hyperparameters from LEGnet. We used the default radial
basis function kernel with C = 100, γ = 2/(N(N − 1)), and ϵ = 0.1.

3 Experimental Results

3.1 Datasets of Post-Stroke Aphasia

In-House Dataset 1 (DS-1): This dataset consists of 52 patients with chronic
post-stroke aphasia with left-hemisphere lesions and aged between 35–80 years.
Structural MRI (T1-weighted; TE=2.98ms, TR=2300ms, TI=900ms, res=1mm
isotropic) and rs-fMRI (EPI; TE=20ms, TR=2/2.4s, res=1.72 × 1.72 × 3mm3)
were acquired on a Siemens 3T scanner. Both scans are pre-processed using
the CONN toolbox [22]. Lesion boundaries were delineated manually by trained
professionals and normalized to the MNI space. We use the Brainnetome atlas [6]
to delineate 246 ROIs for the input rs-fMRI connectivity. Finally, all patients
were evaluated using the WAB test [10] to obtain a measure of overall language

4 All code and synthetic data will be made public upon paper acceptance.
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Table 1. Language prediction on DS-1 using repeated 10-fold CV for LEGNet and
the baselines in Section 2.4. The asterisk * indicates statistically worse performance
(p < 0.05) compared to the best performing model in highlighted in bold.

Methods RMSE MAE R2 Correlation Coeff.

LEGNet 17.38 ± 0.44 12.56± 3.02 0.35 ± 0.03 0.61 ± 0.03
BrainGNN† 19.46± 0.30∗ 14.02± 2.59∗ 0.29± 0.04∗ 0.59± 0.02∗
BNC-mask 19.18± 1.82∗ 11.61± 2.33 0.22± 0.05∗ 0.55± 0.03∗

BNC-2channel 22.78± 0.53∗ 19.41± 0.89∗ 0.21± 0.10∗ 0.53± 0.05∗
SVR 20.45± 0.35∗ 16.85± 0.26∗ 0.13± 0.05∗ 0.55± 0.03∗

LEGNet (w/o HCP-SL) 18.39 ± 0.68∗ 15.33 ± 0.57∗ 0.29 ± 0.05∗ 0.58 ± 0.04

ability (i.e., WAB-AQ). This value ranges from 0-100 with lower scores indicating
severe aphasia, and higher scores indicating mild aphasia.

In-House Dataset 2 (DS-2): This dataset consists of 18 patients with chronic
post-stroke aphasia that were recruited separately from DS-1. While the inclu-
sion criteria and neuroimaging acquisition protocols are the same as for DS-1,
the distribution of WAB-AQ scores is different. This provides an ideal scenario
to evaluate cross-dataset generalization of LEGNet and the baseline models.

3.2 Performance Characterization and Model Interpretation

Table 1 reports the predictive performance of each method using repeated 10-
fold CV on DS-1. LEGNet achieves the best performance in RMSE, R2, and
correlation coefficient. While it is second-best to BNC-masked in MAE, the dif-
ference is not statistically significant. As a baseline, we applied the LEGNet
architecture to DS-1 from a random initialization, i.e., without having access to
synthetic data. To avoid data leakage, we selected the hyperparameters based
on the corresponding modules used in previous studies [12,15]. We note a sta-
tistically significant decrease in performance w/o HCP, which underscores the
importance of using synthetic data to design and initialize the deep network.

Fig. 3 (left) illustrates the top two subgraphs identified by LEGNet for the
best-performing model during repeated 10-fold CV. The top subgraphs are iden-
tified by averaging the subgraph assignment scores for each ROI (ψ (Θ1Lj) from
Section 2.1) across all 52 patients in DS-1. We use Neurosynth [24] to decode
the functionality associated with the ROIs assigned to each of the top two sub-
graphs, as shown in Fig. 3 (right). We note that LEGNet assigns high scores
to regions that are related to the language ability. Intuitively, these regions also
influence the prediction of language ability, as described in Section 2.1.

Finally, we tested generalization performance by applying the model that
performs best on DS-1 to DS-2 without any fine-tuning (Table 2). In terms of
R2, LEGNet maintains a leading position but, along with the other baselines,
also shows a decrease compared to the validation performance in Table 1. While
BrainGNN and SVR also show a decrease, BrainNetCNN-based models exhibit
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Table 2. Language prediction on DS-2 with the model from repeated 10-fold CV that
generalizes the best. Top performance is highlighted in bold.

Methods RMSE MAE R2 Correlation Coeff.

LEGNet 17.71 8.74 0.19 0.44
BrainGNN† 18.52 12.64 0.11 0.34
BNC-mask 19.24 12.68 0.04 0.31

BNC-2channel 19.70 13.47 0.01 0.28
SVR 18.43 12.65 0.12 0.35

LEGNet (w/o HCP-SL) 18.36 11.26 0.12 0.40

Fig. 3. Left: Top two subgraphs in in DS-1. Right: The z−score of each subgraph
from Neurosynth [24] indicating the association strength with a particular function.

a sharper drop, indicating their reduced robustness on unseen data. The other
three metrics follow a similar trend. This is expected due to the slight distribution
shift between DS-1 and DS-2. Nevertheless, LEGNet still outperforms all baseline
methods, indicating superior generalization ability.

4 Conclusion

We have introduced LEGNet, a novel lesion-aware edge-based graph neural net-
work model designed to predict language performance in post-stroke aphasia
patients from rs-fMRI connectivity. LEGNet bridges the gap between the lesion
boundary defined on nodes and rs-fMRI connectivity defined on edges, while
simultaneously using the lesion size and position to guide both the graph con-
volution and subgraph identification processes. Our synthetic data generation
procedure addresses the challenge of limited patient data by simulating lesioned
brain networks in healthy subjects. Pretraining on the augmented HCP dataset
allows for unbiased hyperparameter selection and a reliable model initializa-
tion for fine-tuning on patient data. We demonstrate that LEGNet outperforms
state-of-the-art methods in predictive accuracy and generalization ability, thus
highlighting its potential as a reliable tool for post-stroke aphasia evaluation.
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